Convex Multiple-Instance Learning by Estimating Likelihood Ratio
نویسندگان
چکیده
We propose an approach to multiple-instance learning that reformulates the problem as a convex optimization on the likelihood ratio between the positive and the negative class for each training instance. This is casted as joint estimation of both a likelihood ratio predictor and the target (likelihood ratio variable) for instances. Theoretically, we prove a quantitative relationship between the risk estimated under the 0-1 classification loss, and under a loss function for likelihood ratio. It is shown that likelihood ratio estimation is generally a good surrogate for the 0-1 loss, and separates positive and negative instances well. The likelihood ratio estimates provide a ranking of instances within a bag and are used as input features to learn a linear classifier on bags of instances. Instance-level classification is achieved from the bag-level predictions and the individual likelihood ratios. Experiments on synthetic and real datasets demonstrate the competitiveness of the approach.
منابع مشابه
MICCLLR: A Generalized Multiple-Instance Learning Algorithm Using Class Conditional Log Likelihood Ratio
We propose a new generalized multiple-instance learning (MIL) algorithm, MICCLLR (multiple-instance class conditional likelihood ratio), that converts the MI data into a single meta-instance data allowing any propositional classifier to be applied. Experimental results on a wide range of MI data sets show that MICCLLR is competitive with some of the best performing MIL algorithms reported in li...
متن کاملMICCLLR: Multiple-Instance Learning Using Class Conditional Log Likelihood Ratio
Multiple-instance learning (MIL) is a generalization of the supervised learning problem where each training observation is a labeled bag of unlabeled instances. Several supervised learning algorithms have been successfully adapted for the multiple-instance learning settings. We explore the adaptation of the Naive Bayes (NB) classifier and the utilization of its sufficient statistics for develop...
متن کاملHierarchical reconstruction using geometry and sinogram restoration
The authors describe and demonstrate a hierarchical reconstruction algorithm for use in noisy and limited-angle or sparse-angle tomography. The algorithm estimates an object's mass, center of mass, and convex hull from the available projections, and uses this information, along with fundamental mathematical constraints, to estimate a full set of smoothed projections. The mass and center of mass...
متن کاملMax-margin Multiple-Instance Learning via Semidefinite Programming
In this paper, we present a novel semidefinite programming approach for multiple-instance learning. We first formulate the multipleinstance learning as a combinatorial maximummargin optimization problem with additional instance selection constraints within the framework of support vector machines. Although solving this primal problem requires non-convex programming, we nevertheless can then der...
متن کاملConvex Invariance Learning
Invariance and representation learning are important precursors to modeling and classification tools particularly for non-Euclidean spaces such as images, strings and nonvectorial data. This article proposes a method for learning invariances in data while jointly estimating a model. The technique results in a convex programming problem with a consistent and unique solution. Representation varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010